Surveying Laboratory List of Expirements

Setting Out Straight Line/ Horizontal Taping/Pace Length over Sloping Ground

Measuring the Sides and the Diagonals of a Quadrilateral

Horizontal Control for Mapping by Linear Measurements

Testing the Level (Collimation Test)

Differential leveling
Contouring From Grid (Spot Elevation)

Horizontal \& Vertical angles using Total station (TS02 PLUS)

Total station (TS02 Plus) \& Quick-survey
Total station-TS02 PLUS programs
(Tie distance / Remote height / Area)

Total station-TS02 PLUS / (Station setup/ Survey)
Total station-TS02 PLUS (Stakeout)
Survey Application Using Hi and Prism Height

Survey Engineering Lab

Device Name: level
Used For: establish or verify points in the same horizontal plane. It is used in surveying and building with a vertical staff to measure height differences and to transfer, measure and set heights.
Experiment associated with it: Testing the level and training on leveling
Courses associated with it: surveying

LEVEL Device Procedure:

Using the naked eye, set out points A, B, C, and D on a straight line, as shown in Fig.3, on an approximately level ground so that $A B=10 \mathrm{~m}, \mathrm{BC}=\mathrm{CD}=20 \mathrm{~m}$. Put chaining pins at all the set out points.

- Set the level on point C (halfway between B and D), and take the readings RCB (assume it is $=1.28$ m) and RCD (Assume it is $=2.10 \mathrm{~m}$) on the two rods that are held vertically on points B and D.
- \quad Since the instrument is halfway between B and C error in the collimation line will affect both readings ($R C B$ and $R C D$) in the same way. Therefore, the true difference in elevation ΔH between points B and D is the difference between the readings $R C D-R C B(=0.82 m)$.

- Move the instrument to point A and level it carefully. Take the readings RAB (assume $=1.49 \mathrm{~m}$) and RAD (assume $=2.35 \mathrm{~m}$) on both rods at points B and D.
- Check the line of collimation by comparing the differences between the two readings taken from station $A(2.35-1.49=0.86 \mathrm{~m})$ and the true difference in elevation between B and $D(0.82 \mathrm{~m})$ as calculated in step 3. The line of collimation is out of adjustment if both values differ.

Survey Engineering Lab

Device Name: Digital level
Used For: establish or verify points in the same horizontal plane. It is used in surveying and building with a vertical staff to measure height differences and to transfer, measure and set heights. Experiment associated with it: Differential leveling/Contouring from grid (or spot) elevations Courses associated with it: surveying

Differential leveling Procedure:

- Set the points ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) on the ground and measure the distance between points.
- Find the elevation of BM using handled GPS.
- Set up the level between A\& Bon the middle of distance.
- Sight at A as BS then sight at B as FS
- Set up the level between B\& C on the middle of distance.
- Sight at B as BS then sight at C as FS
- Set up the level between C\& Aon the middle of distance.
- Sight at C as BS then sight at A as FS

Contouring From Grid Procedure:

Make the grid which has ($1 \mathrm{~m}^{*} 1 \mathrm{~m}$) dimension on the area shown in fig.:4, choose any point around your area and assume it the bench mark which has (600m) elevation.

Read the rod reading for all point from (A1 TO F4) and write it in the table.

Survey Engineering Lab

[^0]

A the Heshemte Unversty		
The Hashemite University		
College of Engineering كلية الهiهنة		
Department of Civil Engineering		
Machine Identification Card		
Name $\begin{array}{rr} \\ & \text { THEODOLITE }\end{array}$	ManufacturerTRIMBLE / SPECTRA - MEXICO	
Machine Description \quad Model No. \quad DET-2		
THEODOLITE,ELECTRONIC,CONSIST OF :ELECTRONIC THEODOLITE TYPE TDET-2,PLUG IN BATTERY.Used For. surveying applications		
Safety Instruction	Maintenance Record	
Tighten the screws when used	running	
The experiment conducted on this machine Horizontal \& Vertical angles using Theodolite/Horizontal angles using repeetition method \& mapping by linear measurements		
The experiment summary Measure Horizontal \& Vertical angles using Theodolite Train to the traversing using linear measurements only Measure horizontal angle by repcition		

Horizontal \& Vertical angles Procedure:

Procedure for measuring horizontal angles

- Set the theodolite on point A , center and level the instrument.

Since the used theodolite is an electronic one, don't initialize the angle and each student should start measurements from a different arbitrary starting angle. Make sure that the readings of the theodolite are reading in an increasing order when the theodolite is rotated from left to right, if not you have to change the polarity of the reading direction.

- Put the telescope in position I (Face Left):

Sight with the vertical hair bisecting the left target (L) or simply sight on the left target, record the reading "a" in column 3 first raw in Table 1 ($276^{\circ} 14^{\prime} 23^{\prime}$ ").

Sight on the right target (R), record the reading " b " in column 3 second raw (307° 51' 33 '’).

- Put the telescope in position II (Face Right):

Sight on the right target, record the reading " c " in column 4 second raw ($127^{\circ} 51$ '41’’).

Sight on the left target, record the reading " d " in column 4 first raw ($96^{\circ} 14^{\prime} 34^{\prime \prime}$).

- Record the degrees of position I, and the mean of the minutes and seconds of readings (a) and (d) for the left target in the column headed "Mean" ($276^{\circ} 14^{\prime} 28^{\prime}$).
- Write the degrees of position I and the mean of the minutes and seconds of readings (b) and (c) for the right target in column "Mean" ($307^{\circ} 51^{\prime} 37$ ").
- Calculate the value of the angle by subtracting the mean reading of the left target from the mean reading of the right target and record the result in the column headed "Angle".

$$
\text { Angle } \mathrm{LA} R=307^{\circ} 51^{\prime} 37^{\prime \prime}-276^{\circ} 14^{\prime} 13^{\prime \prime}=31^{\circ} 37^{\prime} 13^{\prime \prime}
$$

- Add 360° to the mean reading of the right target if it is smaller than the mean reading of the left target as can be seen in the second example in Table 1. Why do you have to add the 360° ?

Mean Angle $31^{\circ} 37^{\prime} 11$

Angle LÂR $=360^{\circ}+9^{\circ} 19^{\prime} 47^{\prime \prime}-337^{\circ} 42^{\prime} 34^{\prime \prime}=31^{\circ} 37^{\prime} 13^{\prime \prime}$

- The angle LÂR can be obtained by calculating both half angels from position I and position II as shown in Table 2:
- For any subsequent measurement of the same angle change the initial reading as follows:
a. For 1 " theodolites, rotate the horizontal graduated circle directly using the circle setting knob.
b. For repetition theodolites, loosen the lower plate, tighten the upper screws, and rotate the alidade a small angle.

Fix the lower plate by tightening the lower screws. Loosen the upper plate and proceed with the measurements without touching the lower screws.

- Calculate the mean of the results of all measurements to find the final value of the angle ($31^{\circ} 37^{\prime} 11^{\prime \prime}$).

Procedure for measuring vertical angles

- Sight while the theodolite is in position I (Face Left) with the horizontal hair bisecting the target.
- Center the bubble of the index level (match both ends in case of split bubble levels). This step is not needed in theodolites with automatic vertical collimation.
- Take the reading and record it ($87^{\circ} 22^{\prime} 43^{\prime \prime}$) (Table 3).
- Reverse the telescope to position II (Face Right) and repeat steps 1, 2, and 3. Record the reading ($272^{\circ} 39^{\prime} 57^{\prime \prime}$).
- Add both readings and compare the results with 360°. The difference $\left(0^{\circ} 2^{\prime} 40^{\prime \prime}\right)$ is twice the value of the index error.
- Correct the readings such that their sum agrees with 360° exactly $\left(87^{\circ} 21^{\prime} 23^{\prime \prime}+272^{\circ} 38^{\prime} 37^{\prime \prime}=\right.$ $360^{\circ} 00^{\prime} 00^{\prime \prime}$).
- Subtract the corrected angle of position I from 90° to get the vertical angle $\left(90^{\circ} 00^{\prime} 0^{\prime \prime}-87^{\circ} 21^{\prime}\right.$, $23^{\prime \prime}=+2^{\circ} 38^{\prime} 37^{\prime \prime}$).

Survey Engineering Lab

[^1]

Leica flexline ts02 plus total Procedure

- Level the TS02 PLUS.
- Setup the total station with known station.
- Choose the program you wants surveying or stake out

Stake out Procedure

- Level the TS02plus
- Turn the laser on from fixed key (FNC button)
- PROGRAM \rightarrow stakeout

From function key choose ENH (to enter point name and the coordinate of your points)
Slide the horizontal screw until $\mathbf{H z}=\mathbf{0 0 0} 00 \rightarrow$ DIST
Move the telescope according to the distance appear in screen \rightarrow DIST
Repeat the same procedure until tick mark appear in screen

い ᄂ
L

Survey Engineering Lab

Device Name: GNSS RTK
Used For: survey points or layout it
Experiment associated with it: Surveying using GNSS
Courses associated with it: surveying

	The Hashemite University	(الجامعة الهاشمية
	Engineering College	كلية الهندسة
	Department of Civil Engineering	قسم الهندسة المدنية
Machine Identification Card		
	Name	Manufacturer
	GNSS RTK GPS ROVER	Trimble - United states
	Machine Description	Model No. SP85
	Gnss rtk gps rover (gnss antenna rover spectra sp85 + data controller al giz rt8.	
Safety Instruction Do not damage the rechargeable Lithiumion battery. A damaged battery can cause an explosion or fire, and can result in personal injury and/or property damage		Maintenance Record
		Running
The experiments conducted on this machine Surveying using GNSS		
The experiments summary Determine the form, boundary, and position of objects or points in space relative to other forms, boundaries or points using GNSS.		

GNSS ANTENNA ROVER SPECTRA SP85
DATA CONTROLLER AL - GIZ RT8 Procedure:

- Determine the place to be surveyed, and then look at the aerial map to determine the calibration points
- Choose at least three POINTS around the desired place for calibration.
- Monitor the required points or stakeout them.

[^0]: Device Name: Theodolite
 Used For: surveying applications
 Experiment associated with it: Measurement of horizontal and vertical angles
 Courses associated with it: surveying

[^1]: Device Name: : Total station
 Used For: surveying and building construction
 Experiment associated with it: TOTAL STATION(quick survey, programs, survey, stakeout)
 Courses associated with it: surveying

